

晶采光電科技股份有限公司 AMPIRE CO., LTD.

Specifications for LCD module

Customer	
Customer part no.	
Ampire part no.	AM-800480BTMQW-TG0H-B
Approved by	
Date	

□ Preliminary Specification

■ Approved Specification

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟)

Approved by	Checked by	Organized by

Date: 2018/08/08 AMPIRE CO., LTD.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2018/02/14	-	New release	Mark
2018/08/08		Update the drawing	Mark

1. Features

It's a 7 inches Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module. This module is composed of a 7" TFT-LCD panel, LED backlight.

(1) Construction: 7" a-Si TFT active matrix, White LED Backlight.

(2) Resolution (pixel): 800(R.G.B) X480

(3) Number of the Colors: 16.7M colors (R, G, B 8 bit digital each)

(4) LCD type: Transmissive, normally White

(5) Interface: LVDS

(6) Viewing Direction: 6 o'clock (Gray inversion)

(7) Capacitive touch panel:

Controller: EXC3132Cover Glass :1.1mm

• With Double side adhesive on Cover Glass

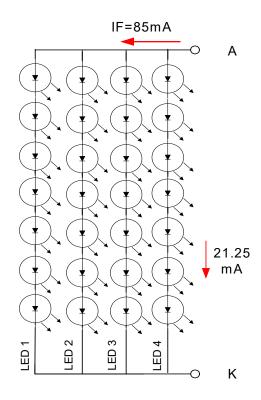
(8) Without LED driver

Date: 2018/08/08

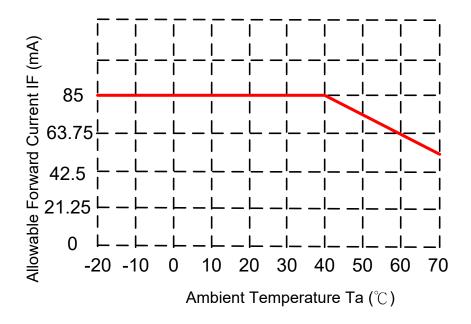
2. PHYSICAL SPECIFICATIONS

Item	Specifications	unit
LCD size	7 inch (Diagonal)	
Resolution	800 x (RGB) x 480	dot
Pixel pitch	0.192(W) x 0.1805(H)	mm
Active area	153.6(W) x 86.64(H)	mm
Module size	184.0(W) x 128.0(H) x 10.9(D)	mm
Color arrangement	RGB-stripe	
interface	Digital	

3. ABSOLUTE MAX. RATINGS


Item	Symbol		Values			Remark
item	Symbol	MIN	TYP	MAX	Unit	Remark
Power Voltage	VDD	-0.5		5	V	
Operation Temperature	Тор	-20	-	70	${\mathbb C}$	
Storage Temperature	Tst	-30	-	80	${\mathbb C}$	

Note 1 The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

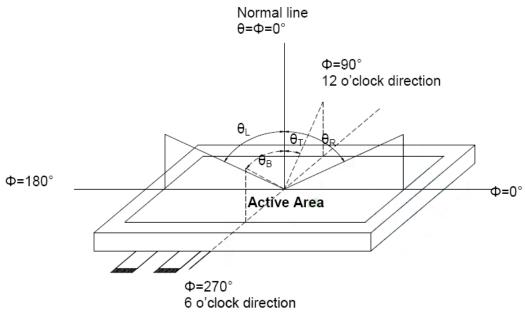

4. Backlight Driving Conditions

ITEM	SYMBOL	MIN	TYP	MAX	UNIT	NOTE
LED voltage	VAK		23.1	-	V	Note 1
LED current	IF		85		mΑ	Note 1
LED life time			30		kHrs	Note 2

Note 2 The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IF=85mA. The LED lifetime could be decreased if operating IF is larger than 85mA.

Note 3 When LCM is operated over 40°C ambient temperature, the IF should be follow :

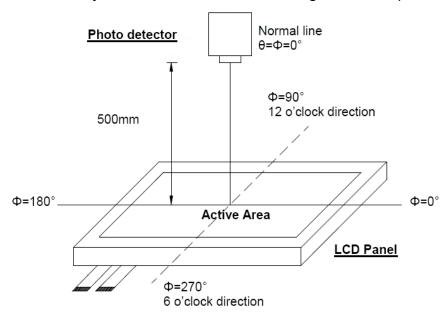
5. Optical Specifications


				Values			N
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	θ L	Φ = 180° (9 o'clock)	60	70			
Viewing angle	θ R	$\Phi = 0^{\circ}$ (3 o'clock)	60	70		dograa	Note 1
(CR≧10)	θ T	Φ = 90° (12 o'clock)	40	50		degree	Note1
	θ B	Φ = 270° (6 o'clock)	50	60			
Deenenee time	TON			5	7	msec	Nota
Response time	TOFF			20	28	msec	Note3
Contrast ratio	CR		400	500			Note4
	WX		0.26	0.31	0.36		
	WY		0.32	0.37	0.42		
	RX	Normal	0.57	0.62	0.67		
Color	RY	<i>θ</i> =Ф=0°	0.31	0.36	0.41		Note5
chromaticity	GX		0.30	0.35	0.40		Note6
	GY		0.55	0.60	0.65		
	BX		0.06	0.11	0.16		
	BY		0.07	0.12	0.17		
Luminance (central point)	L		340	425		cd/m ²	Note6
Luminance uniformity	YU		70	75		%	Note6

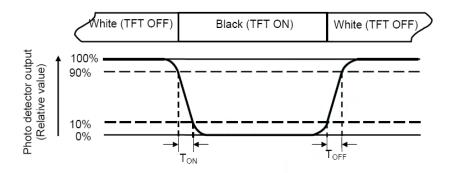
Test Conditions:

VDD = 3.3V, I_F = 120 mA (Backlight current), the ambient temperature is 25 $^{\circ}\!\!$ C .

The test systems refer to Note 2.


Note 1 Definition of viewing angle range

Note 2 Definition of optical measurement system


Date: 2018/08/08

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° / Height: 500mm.)

Note 3 Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

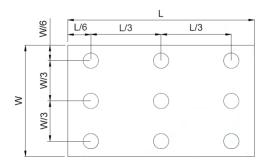
Note 4 Definition of contrast ratio

Contrast ratio(CR) = $\frac{Luminance\ measured\ when\ LCD\ on\ the\ "White"\ state}{Luminance\ measured\ when\ LCD\ on\ the\ "Black"\ state}$

Note 5 Definition of color chromaticity (CIE1931)

Color coordinated measured at center point of LCD.

All input terminals LCD panel must be ground when measuring the center area of the panel.


Note 6 Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to bellow figure).

Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

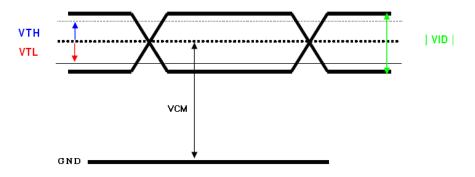
L ---- Active area length W ---- Active area width

Bmax: The measured maximum luminance of all measurement position.

Bmin: The measured minimum luminance of all measurement position.

6. INTERFACE

CN2:P1.0 20Pin/CP-100-S20G-H16 or Equivalent

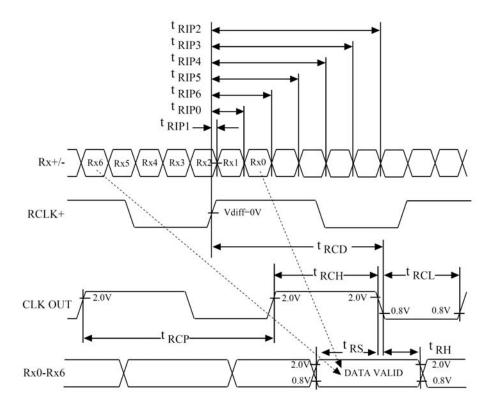

Pin No.	Symbol	Function
1	VDD	POWER SUPPLY
2	VDD	POWER SUPPLY
3	GND	Power Ground
4	GND	Power Ground
5	INO-	Transmission Data of Pixels
6	IN0+	Transmission Data of Pixels
7	GND	Power Ground
8	IN1-	Transmission Data of Pixels 1
9	IN1+	Transmission Data of Pixels 1
10	GND	Power Ground
11	IN2-	Transmission Data of Pixels 2
12	IN2+	Transmission Data of Pixels 2
13	GND	Power Ground
14	CLK-	Sampling Clock
15	CLK+	Sampling Clock
16	GND	Power Ground
17	IN3-	Transmission Data of Pixels 3
18	IN3+	Transmission Data of Pixels 3
19	GND	Power Ground
20	GND	Power Ground

I: input, O: output, P: power

7. ELECTRICAL CHARACTERISTICS

7.1 DC Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Digital Power Supply Voltage	VDD	3.0	3.3	3.6	V	
Digital Power Supply Current	IDD	-1	110	-	mA	
Differential Input High Threshold	VTH			100	mV	VCM=1.2V
Differential Input Low Threshold	VTL	-100		1	mV	
Input current	IIN	-10	-	+10	uA	
Differential input Voltage	VID	0.2		0.6	V	
Common Mode Voltage Offset	VCM	$\frac{ VID }{2}$	1.25	$2.4 - \frac{ VID }{2}$	V	



7.2 AC Characteristics

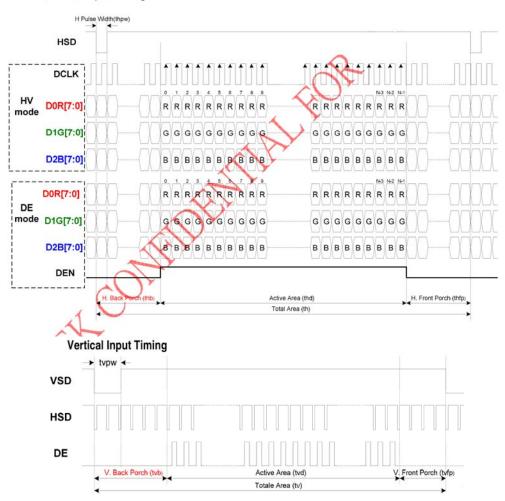
LVDS timing

RECEI	

KECEIV	EK				
t RCP	CLK OUT Period	11.76	T	50.0	ns
t RCH	CLK OUT High Time		4T/7		ns
t RCL	CLK OUT Low Time		3T/7		ns
t _{RCD}	RCLK+/- to CLK OUT Delay		5T/7		ns
t _{RS}	TTL Data Setup to CLK OUT	3T/7-2.5			ns
t _{RH}	TTL Data Hold from CLK OUT	4T/7-3.5			ns
t TLH	TTL Low to High Transition Time		3.0	5.0	ns
t THL	TTL High to Low Transition Time		3.0	5.0	ns
t RIP1	Input Data Position 0 (T=11.76ns)	-0.4	0.0	0.4	ns
t RIPO	Input Data Position 1 (T=11.76ns)	T/7-0.4	T/7	T/7+0.4	ns
t RIP6	Input Data Position 2 (T=11.76ns)	2T/7-0.4	2T/7	2T/7+0.4	ns
t RIP5	Input Data Position 3 (T=11.76ns)	3T/7-0.4	3T/7	3T/7+0.4	ns
t RIP4	Input Data Position 4 (T=11.76ns)	4T/7-0.4	4T/7	4T/7+0.4	ns
t RIP3	Input Data Position 5 (T=11.76ns)	5T/7-0.4	5T/7	5T/7+0.4	ns
t RIP2	Input Data Position 6 (T=11.76ns)	6T/7-0.4	6T/7	6T/7+0.4	ns
t RPLL	Phase Lock Loop Set			10.0	ms

Note: 1) Vdiff = (RA+) - (RA-), (RCLK+) - (RCLK-)

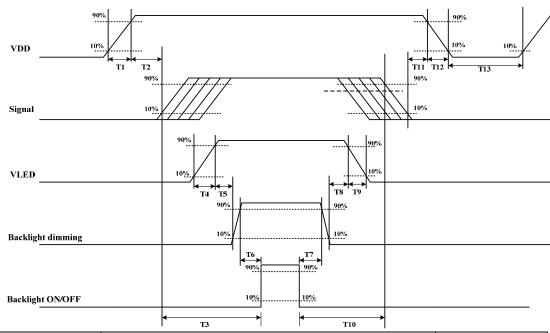
TTL


•	Horizontal	timing

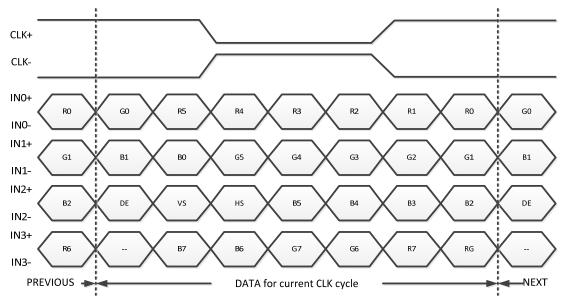
Beremeter	Combal		11-4		
Parameter	Symbol	Min.	Тур.	Max.	Unit
H-Display Area	thd		800		DCLK
DCLK Frequency	fclk		30	50	MHz
One Horization Period	th	862	1056	1200	DCLK
HS Pulse Width	thpw	1		40	DCLK
HS Back Porch (Blanking)	thb		46		DCLK
HS Front Porch	thfp	16	210	354	DCLK
DE Mode Blanking	th-thd	85	256	400	DCLK

Vertical timing

Dougnator	Combal		Unit	
Parameter	Symbol	Min.	Тур.	Unit
V-Display Area	tvd		480	th
VS period Time	Tv	513	525	th
VS pulse width	tvpw	3	-	th
VS Back Porch (Blanking)	tvb		23	th
VS Front Porch	tvfp	7	22 147	th
DE Mode Blanking	tv-tvd	30	45 170	th


Horizontal Input Timing

7.3 Power ON/OFF sequence


Date: 2018/08/08

VDD power and LED on/off sequence are as follows. Interface signals are also shown in the chart. Signal shall be Hi-Z state or low level when VDD is off.

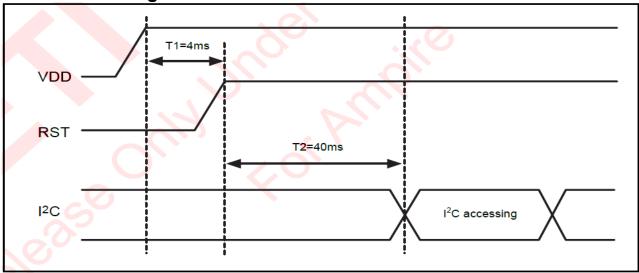
Domonoton		Value				
Parameter	Min.	Тур.	Max.	Units		
T1	0.5	-	10	[ms]		
T2	0	40	50	[ms]		
T3	200	-	-	[ms]		
T4	0.5	-	10	[ms]		
T5	10	-	-	[ms]		
T6	10	-	-	[ms]		
T7	0	-	-	[ms]		
Т8	10	-	-	[ms]		
T9	-	-	10	[ms]		
T10	110	-	-	[ms]		
T11	0.5	16	50	[ms]		
T12	-	_	100	[ms]		
T13	1000	-	-	[ms]		

7.4 24-BIT LVDS Input Data Format

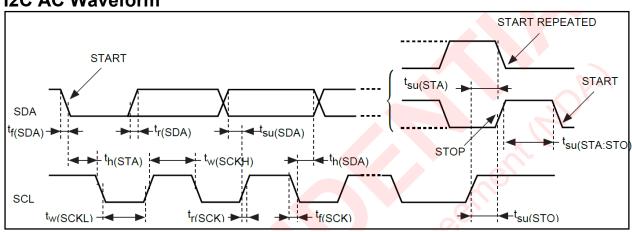
Note: R/G/B data 7: MSB, R/G/B data 0: LSB

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	
R6	Red Data 6	
R5	Red Data 5	Red-pixel Data
R4	Red Data 4	Each red pixel's brightness data consists of
R3	Red Data 3	these 8 bits pixel data.
R2	Red Data 2	these o bits pixel data.
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Date 7 (MSB)	
G6	Green Date 6	
G5	Green Date 5	Croon pivol Data
G4	Green Date 4	Green-pixel Data Each green pixel's brightness data consists of
G3	Green Date 3	these 8 bits pixel data.
G2	Green Date 2	triese o bits pixel data.
G1	Green Date 1	
G0	Green Date 0 (LSB)	
B7	Blue Data 7 (MSB)	
B6	Blue Data 6	
B5	Blue Data 5	Blue-pixel Data
B4	Blue Data 4	Each blue pixel's brightness data consists of
B3	Blue Data 3	these 8 bits pixel data.
B2	Blue Data 2	these o bits pixel data.
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
CLK+	LVDC Cleak Innet	
CLK-	LVDS Clock Input	
DE	Display Enable	
VS	Vertical Sync Signal	
HS	Horizontal Sync Signal	

8. PROJECTED CAPACITIVE-TYPE TOUCH PANEL ELECTRICAL SPECIFICATION SPECIFICATION


ITEM	SPECIFICATION			
Type	Projective Capacitive Touch Panel			
Activation	Two-fingers or Single-finger			
X/Y Position Reporting	Absolute Position			
Touch Force	No contact pressure required			
Calibration	No need for calibration			
Report Rate	Approx 100 points/sec			
Interface	I2C			
Control IC	EETI3132			

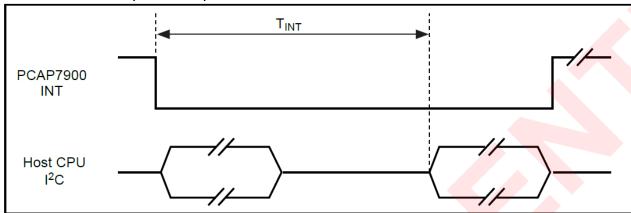
Item	Symbol	Min.	Тур.	Max.	Unit
Power Supply Voltage	VDD	3	3.3	3.6	V
Low Level Input Voltage	VIL	0		0.8	V
High Level Input Voltage	VIH	0.8*VIN	1	VIN	V


Interface

	CN6								
Pin No.	Symbol	Function							
1	GND	GND							
2	SDA	I2C Data							
3	SCL	I2C Clock							
4	VDD	Power Supply for TP controller							
5	INT	Interrupt Request pin							
6	/RES	Rest pin to Master Chip							

Power- on Timing Chart

I2C AC Waveform


I2C Characteristics

Symbol	Parameter	SCL =	100KHz	SCL =	400KHz	Unit
Symbol	Farameter	Min	Max	Min	Max	Onit
t _W (SCLH)	SCL clock high time	4.7		1.3		
tw(SCLL)	SCL clock low time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		
^t h(SDA)	SDA data hold time	0		0	900	
t _r (SDA) t _r (SCL)	SDA and SCL rise time		1000		300	ns
^t f(SDA) ^t f(SCL)	SDA and SCL fall time		300		300	
^t h(STA)	Start condition hold time	4.0		0.6		
tsu(STA)	Repeated Start condition setup time	4.7		0.6		μs
t _{su(STO)}	Stop condition setup time	4.0		0.6		μs
tw(STO:STA)	Stop to Start condition time (bus free)	4.7		1.3		μs

Software Protocol

I2C Transaction Frame: each I2C transaction frame transfers one I2C packet data. The IRQ pin is low level trigger.

The controller will pulls IRQ pin low until no data in the controller buffer.

Report rate = 1 / TINT, it depends on properties of touch screen such as resistive value, I2C clock rate, channel number, thickness and material of cover lens, etc. For better touch performance, we strongly recommend using the 400K clock rate.

From Host to Device
From Device to Host

S = START condition

Sr = Repeat START condition

P = STOP condition

R = Data direction READ (SDA HIGH)

W = Data direction WRITE (SDA LOW)

Ack = Acknowledge (SDA LOW)

Nak = Not acknowledge (SDA HIGH)

Address = 7-bit (0x2A)

DATA = 8-bit

Read mode: Host-receiver, Device-transmitter.

S Add	ress R	Ack	Len-LSB	Ack	Len-N	/ISB	Ack	DATA	Ack
DATA	Ack			D	ATA	Nak	Р		

Host need to read 66 Bytes for input report retrieval. The total 66 Bytes contains 2 Bytes "Length" and 64 Bytes data payload. The value of "Len" is calculated by 2 Bytes for "Len" field and n Bytes for valid "Input Data" in the payload.

The input data packet format inside the I2C payload is defined as

According to different report ID, there are different data format as below. Report ID = 6, for parallel mode multi-touch data.

Multi-Touch format:

Byte0	Byte1								
Report ID = 0x06	Num Of Fingers*								
Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11
				Contac	t data 1				
Byte12	Byte13	Byte14	Byte15	Byte16	Byte17	Byte18	Byte19	Byte20	Byte21
	Contact data 2								
Byte22	Byte23	Byte24	Byte25	Byte26	Byte27	Byte28	Byte29	Byte30	Byte31
				Contac	t data 3				
Byte32	Byte33	Byte34	Byte35	Byte36	Byte37	Byte38	Byte39	Byte40	Byte41
				Contac	t data 4				
Byte42	Byte43	Byte44	Byte45	Byte46	Byte47	Byte48	Byte49	Byte50	Byte51
	Contact data 5								
Byte52	Byte53	Byte54	Byte55			·			·
	Scan	Time							

The device input report contains maximum 5 contacts in one I2C frame. If it must report 10 contacts, device will break these down into 2 I2C frames that report 5 contacts each.

The "Nums of Fingers" indicates the actual contact in this report. The actual contact number is reported in the first frame. The other frames should have an actual count of 0. For 10 contacts example, the actual count in the first frame has a value of 10, and the second frame has an actual count of 0.

Contact data format:

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9
State**	Finger ID	X *** (LSB)	X (MSB)	Y *** (LSB)	Y (MSB)	rese	rved	rese	rved

^{**} tate: Bit0=Down/Up bit, Bit0 = 1 for Touch Down, Bit0 = 0 for Lift off.

Report ID = 3, for vendor specific diagnostics data.

Diagnostics packet format

Date: 2018/08/08

Byte0	Byte1	
Report ID = 0x03	Length	data stream

The "Length" indicates the length of the coming data stream. This data stream must follow EETI eGalax diagnostics format. The software integrator must be carefully handling this data stream.

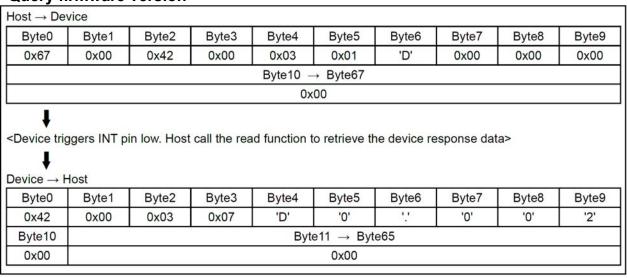
^{***} The X/Y resolution is 4096.

Write mode: Host-transmitter, Device-receiver.

S	Address	W	Ack	0x67	Ack	0x00	Ack			
	Len-LSE	3	Ack	Len-MSB	Ack	DATA	Ack	D	ATA	Ack
	DATA		Ack	1		DATA	Ack	Р		

Host need to write 2 Bytes [0x67] [0x00] to device first, and follow 2 Bytes length field and data payload. Each I2C transaction always contains 64 Bytes data payload so the length field should be always as 66 Bytes (2 Bytes for "Len"+64 Bytes for "Data" payload). If the data to be sent to the controller is less than 64 Bytes, 0 padding is necessary.

The packet format in the payload is defined as diagnostics packet. Diagnostics packet format:


Byte0	Byte1	
Report ID = 0x03	Length	data stream

The "Length" indicates the length of the coming data stream. This data stream must follow EETI eGalax diagnostics format. The software integrator must be carefully handling this data stream.

Command Example

Date: 2018/08/08

Query firmware version

Query controller model name

$Host \rightarrow De$	vice								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9
0x67	0x00	0x42	0x00	0x03	0x01	'E'	0x00	0x00	0x00
				Byte10 -	→ Byte67				
				0x	00				
▼ Device triggers INT pin low. Host call the read function to retrieve the device response data>									
♥ Device → Host									
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9
	,		, , , , ,	,	,		,		

BYTE15

0x00

Byte16 →

0x00

Byte65

Byte14

V ...

Byte10

Note: Byte[11:14] = 001A stands for model PID 001A

Byte12

Power Saving Mechanism

Byte11

EXC7900 - supports 3 working mode for power saving.

PID

Fully working mode:

After reset, the controller module works at full power working state.

Byte13

Idle mode:

After EXC7900 receives a software packet from host computer to request MCU entering idle state, this controller module will enter idle state. At idle state, IRQ pin will be released to high state. Host computer can wake up this controller module via generating a falling edge signal at IRQ pin. When controller transfers to fully working mode, it will reply a wakeup command to host.

Set idle command

Host → Device									
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9
0x67	0x00	0x42	0x00	0x03	0x04	0x36	0x3F	0x01	Т
Byte10 → Byte67									
	0x00								

Host computer send this command as above for idle state configuration setting. Where, T means the scanning interval when in idle state. The touch controller will wakeup every that period of time to scan touch screen to check if the touchscreen touched or not. Once it detects sensor touched, the controller will back to fully working state automatically.

The default value of T is 30, the interval = $T \times 0.25 = 7.5 \text{ms}$

Sleep mode:

Whenever the host computer wants to deep sleep, it issues a sleep command packet to controller. Once the controller firmware receives such sleep command, it enters deep sleep state and does not response until it wakes up from this sleep state. Only host computer can wake up this device via generating a falling edge signal at IRQ pin.

When controller transfers to fully working mode, it will reply a wakeup command to host.

Set sleep command

Date: 2018/08/08

Host → Dev	vice								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9
0x67	0x00	0x42	0x00	0x03	0x03	0x36	0x3F	0x02	0x00
	Byte10 → Byte67								
	0x00								

Host computer send above command packet to touch controller device to make the device enter sleep state for power saving.

Wakeup notification command

Once the controller transfers to working state from idle and sleep state, it will trigger INT pin low and reply below command to host.

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9
0x42	0x00	0x03	0x03	0x36	0x3F	0x01	0x00	0x00	0x00
	Byte10 → Byte65								
0x00									

9. RELIABILITY TEST CONDITIONS

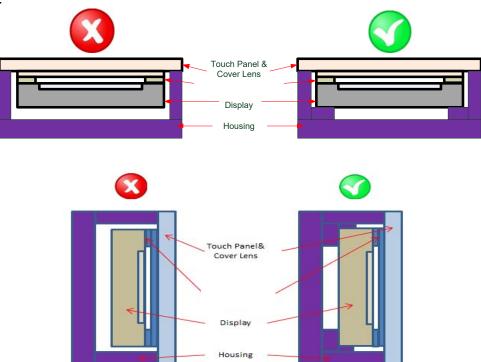
Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=240 hrs	
Low Temperature Operation	-20±3°C , t=240 hrs	
High Temperature Storage	80±3°C , t=240 hrs	1,2
Low Temperature Storage	-30±3°C , t=240 hrs	1,2
Storage at High Temperature and Humidity	60°C, 90% RH , 240 hrs	1,2

Note 1 Condensation of water is not permitted on the module.

Note 2 The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).

10. General Precautions

10.1Safety


(1) Liquid crystal is poisonous. Do not put it your month. If the liquid crystal touches you skin or clothes, you need to wash it off immediately with the soap and water.

10.2 Handling

- The LCD panel is plate glass. Do not subject the panel to mechanical shock or excessive force on its surface.
- 2. The polarizer which attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
- 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put on cover board such as acrylic board, which covers on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
- 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

10.3 Mechanism

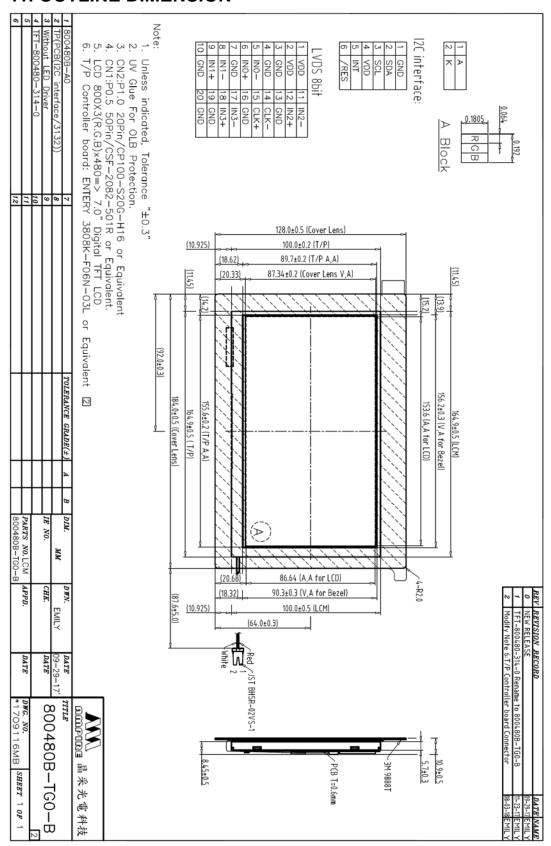
(1) Please mount LCD module by using mounting holes arranged in four corners tightly.

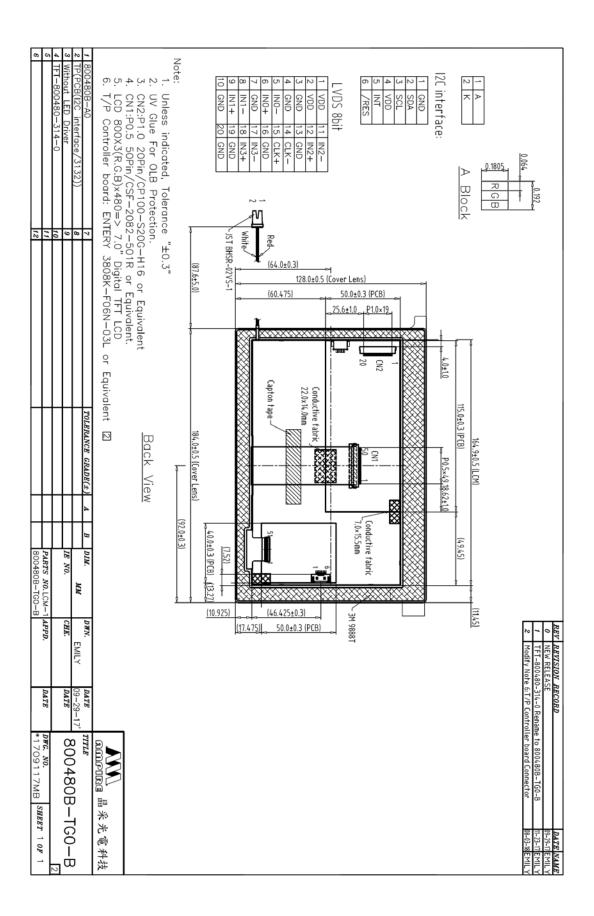
10.4 Static Electricity

- 1. Be sure to ground module before you turn on power or operation module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

10.5 Storage

- Store the module in a dark room where it must keep at +25±10°C and 65%RH or 1. less.
- 2. Do not store the module in surroundings which are containing organic solvent or corrosive gas.
- 3. Store the module in an anti-electrostatic container or bag.


10.6 Cleaning


- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

10.7 Others

- 1. AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.
- Do not apply fixed pattern data signal to the LCD module as you are using the 2. product.

11. OUTLINE DIMENSION

